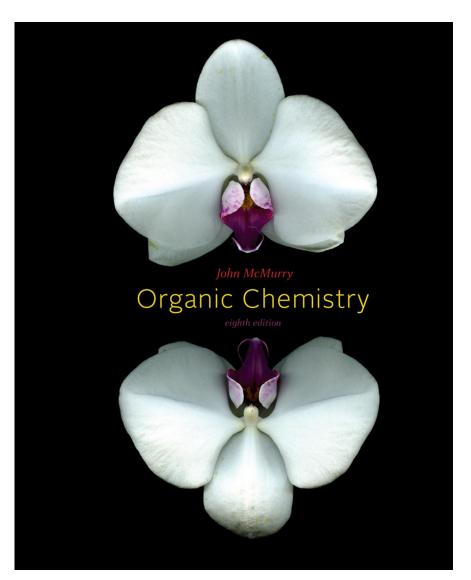
مفردات الكيمياء العضوية الصيدلانية - ١

مفردات الكيمياء العضوية الصيدلانية - ١

- ١ البنية والارتباط
- ٢ الروابط التساهمية القطبية
- ٣- الألكانات وكيميائيتها الفراغية
- ٤ سيكلو الألكانات وكيميائيتها الفراغية
- ٥- الكيمياء الفراغية للمركز رباعي الوجوه
 - ٦-نظرة شاملة حول التفاعلات العضوية
 - ٧- الألكنات: البنية والتفاعلية
 - ٨-تفاعلات الألكنات
 - 9 الألكينات
 - ١ الهاليدات العضوية
 - ١١ –هاليدات الألكيل
 - ١٢ البنزن والصفة الأروماتية
- ١٣ تعيين البنية الكيميائية: مطيافية الكتلة ومطيافية تحت الأحمر
 - ١٤ تعيين البنية الكيميائية: مطيافية الرنين النووي المغناطيسي

مفردات الكيمياء العضوية الصيدلانية - ١ الجزء الأول

- ١ البنية والارتباط
- ٢-الروابط التساهمية القطبية
- ٣- الألكانات وكيميائيتها الفراغية
- ٤ سيكلو الألكانات وكيميائيتها الفراغية
- ٥- الكيمياء الفراغية للمركز رباعي الوجوه
- ٦-نظرة شاملة حول التفاعلات العضوية:التفاعلات الجذرية والقطبية
 - ١٤ تعيين البنية الكيميائية: مطيافية الرنين النووي المغناطيسي


مفردات الكيمياء العضوية الصيدلانية - ١ الجزء الثاني

- ٧- الألكنات: البنية والتفاعلية
 - ٨-تفاعلات الألكنات
 - ٩- الألكينات
 - ١ الهاليدات العضوية
 - ١١ هاليدات الألكيل
 - ١٢ البنزن والصفة الأروماتية
- ١٣ تعيين البنية الكيميائية: مطيافية الكتلة ومطيافية تحت الأحمر

REFERENCE BOOK

الكتاب المرجعي

John McMurry
ORGANIC CHEMISTRY
Eighth Edition

Damascus University
Faculty of Pharmacy
Pharmaceutical Organic Chemistry I

البنية والارتباط

1-Structure and bonding

MC-Murry-Chapter- 1

By Prof.Dr. M.Ammar Al–Khayat 2016–2017

تعريف الكيمياء العضوية

الكيمياء العضوية هي دراسة مركبات الكربون هناك عناصر أخرى كثيرة التواجد الى جانب الكربون مثل: هيدرجين – نتروجين – الكربون مثل: هيدرجين – نتروجين الوكسجين – كبريت – هالوجين

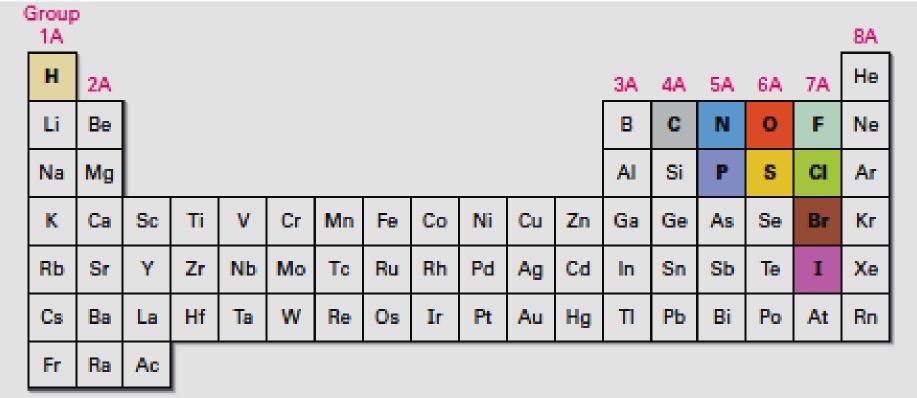


Figure 1.1 The position of carbon in the periodic table.

Other elements commonly found in organic compounds are shown in the colors typically used to represent them.

عنصرالكربون في الجدول الدوري

الجدول الدوري: IV

- إمكانية ارتباط الكربون بعناصر كهرسلبية أو كهرجابية

 CH_3-Cl

 CH_3-NH_2

 CH_3-OH

CH₃-MgBr

C₆H₅-Li

•

إمكانية تشكيل سلاسل

أعداد هائلة من المركبات العضوية

المركبات العضوية

عام ١٨١٦ جرى تحضير مركبات عضوية في المختبر

Animal fat
$$\xrightarrow{\text{NaOH}}$$
 Soap + Glycerin sharing H_2O Soap + Glycerin sharing H_3O^+ "Fatty acids"

© 2007 Thomson Higher Education

"Fatty acids" حموض دسمة

عام ١٨٢٨ جرى تحضير مركب عضوي (يوريا= بولة=كرباميد) من مركب لاعضوي هو ملح سيانات الأمونيوم

$$\begin{array}{c}
NH_4^+ \text{ -OCN} & \xrightarrow{\text{Heat}} & \downarrow \\
H_2N & NH_2
\end{array}$$
Ammonium cyanate

• 2007 Thomson Higher Education

Urea

المركبات العضوية

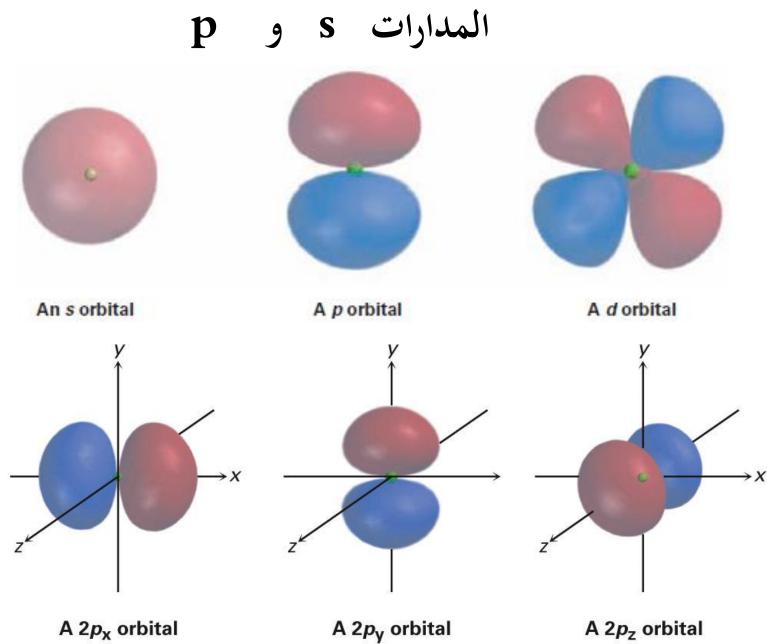
- عدد المركبات العضوية المعروفة حاليا المسجلة في الأدب الكيميائي تفوق حوالي ٣٠ مليون مركبا
- -استطاع الباحثون تطوير طرائق لتصميم واصطناع أعداد كبيرة من المركبات العضوية ولا سيما المواد الدوائية
- -تتكون الكائنات الحية من من مركبات عضوية: البروتينات التي تكون الشعر والجلد والعضلات، والدنا الذي يضبط الموروث الجيني، والأطعمة التي نتغذى بها والأدوية التي نتداوى بها كلها مركبات عضوية
- الكيمياء العضوية علم أساسي يجب على الطالب فهمه أولا وبشكل جيدكي يتمكن من التعرف على الكائنات الحية وكذلك فهم التطور والتقدم الحاصل في مجال الطب والصيدلة والعلوم الحيوية

المركبات العضوية

Cholesterol

Ĥ

H


Benzylpenicillin

N-CH₃

CH₃

أهمية دراسة الكيمياء العضوية في المجال الصيدلاني

- اصطناع المركبات الدوائية
- صناعة الأشكال الصيدلانية
 - تحليل الدواء
 - استخلاص الدواء
 - تأثير الدواء.....

© 2007 Thomson Higher Education

13

سويات الطاقة الالكترونية في الذرة (المدارات والطبقات)

	3rd shell (<i>capacity</i> —18 electrons)	3 <i>d</i> 3 <i>p</i> 3 <i>s</i>	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	₩ ₩
Energy	2nd shell (<i>capacity</i> —8 electrons)	2p 2s	↑ ↑ ↑ ↑	
	1st shell (<i>capacity</i> —2 electrons)	1 <i>s</i>	1	
© 2007 Thomson Higher Education				

التهايؤ (التشكيل) الإلكتروني Electronic configuration

$$Z=6~e$$
 S^2 , S^2 , S^2 , S^2 , S^2 S^2 , S^2 S^2 , S^2 S^2 , S^3 S^2 S^2 , S^3 S^2 S^2 , S^3 S^2 S^3 S^2 S^3 S^2 S^3 S^3

التهايؤ (التشكيل) الإلكتروني Electronic configuration

Problem 1.1

Give the ground-state electron configuration for each of the following elements:

(a) Oxygen (b) Nitrogen (c) Sulfur

A representation of a tetrahedral carbon atom

تمثيل الكربون رباعي الوجوه

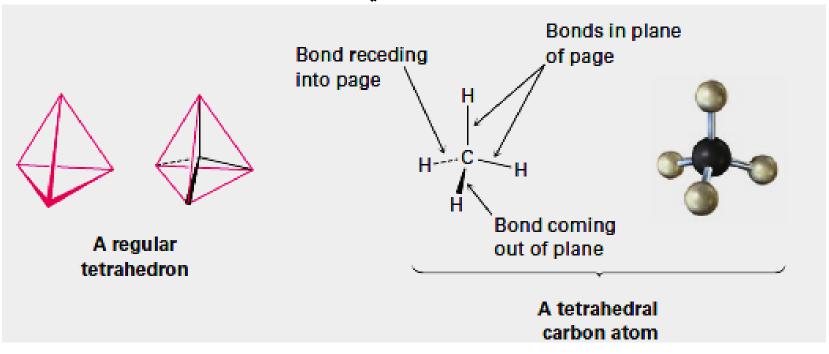
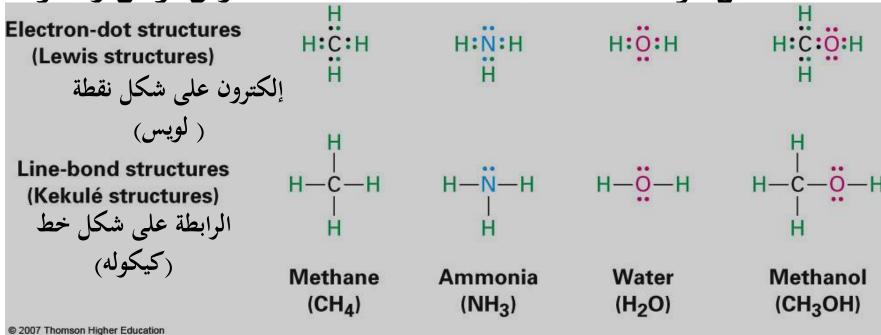
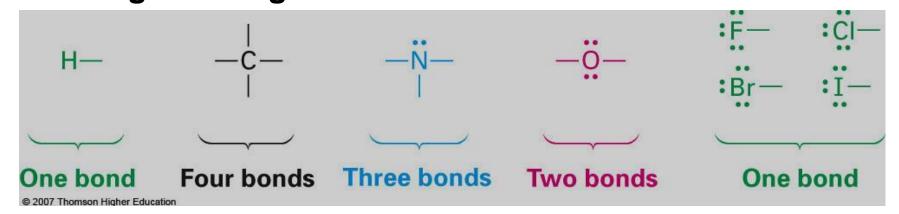
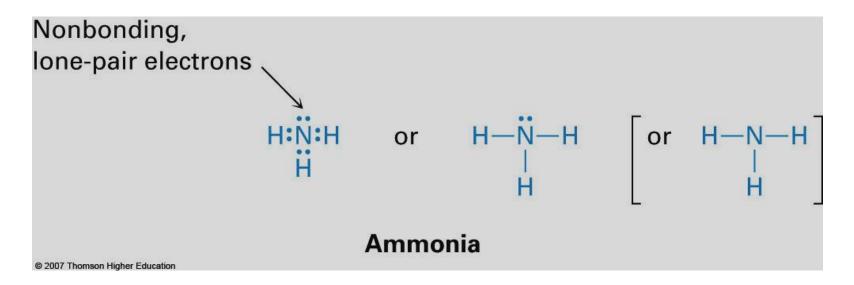




Figure 1.6 A representation of a tetrahedral carbon atom.

The solid lines represent bonds in the plane of the paper, the heavy wedged line represents a bond coming out of the plane of the page, and the dashed line represents a bond going back behind the plane of the page تمثيل الرابطة التساهمية Covalent bond وفق لويس وكيكوله



How many additional valence electrons it needs to reach a noble-gas configuration?

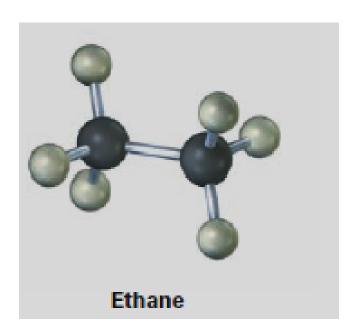
الزوج الإلكتروني غير الرابط في الأمونيا

زوج إلكتروني غير رابط

Worked Example 1.1

Predicting the Number of Bonds Formed by an Atom

How many hydrogen atoms does phosphorus bond to in forming phosphine, PH??


Strategy

Identify the <u>periodic group</u> of phosphorus, and tell from that how many electrons (bonds) are needed to make an octet.

Solution

Phosphorus is in group 5A of the periodic table and has <u>five valence electrons</u>. It thus needs to share three more electrons to make an octet and therefore bonds to three hydrogen atoms, giving PH₃.

Convert the following representation of ethane, C_2H_6 , into a conventional drawing that uses solid, wedged, and dashed lines to indicate tetrahedral geometry around each carbon (gray = C, ivory = H).

What are likely formulas for the following substances?

- (a) CCI?
- (b) AIH?
- (c) $CH?Cl_2$
- (d) SiF?
- (e) CH_3NH ?

Write line-bond structures for the following substances, showing all nonbonding electrons:

- (a) CHCl₃, chloroform
- (b) H₂S, hydrogen sulfide
- (c) CH₃NH₂, methylamine
- (d) CH₃Li, methyllithium

Problem 1.7

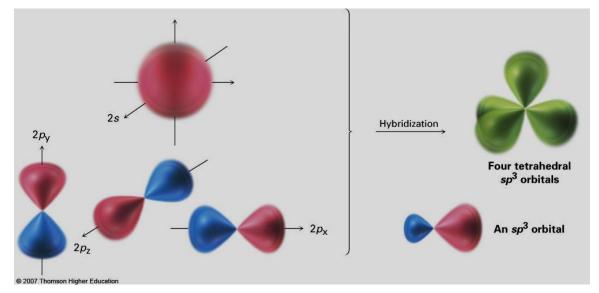
Why can't an organic molecule have the formula C_2H_7 ?

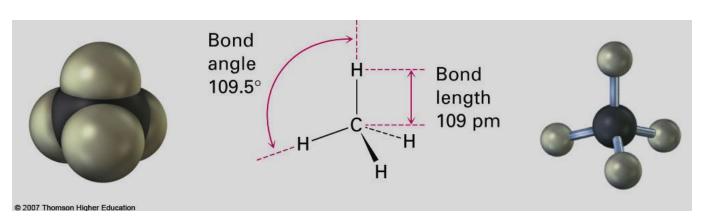
النماذج الجزيئية Molecular models

(b)

مكتنزة (مالئة فضاء) Compact (space filling)

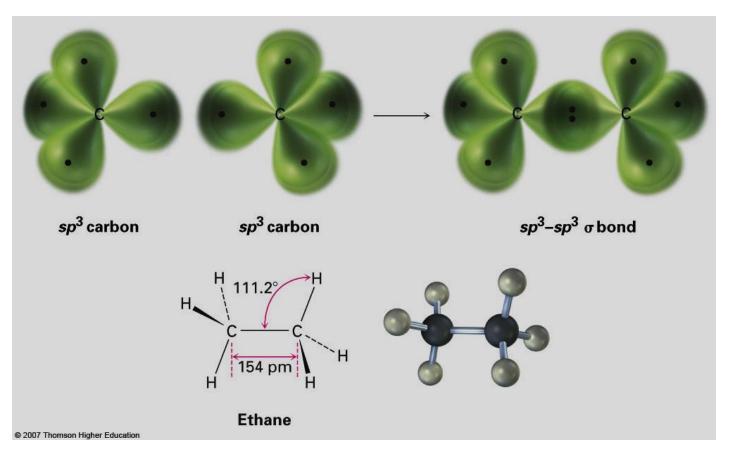
هیکلیة: (أعواد وکرات) skeletal (Ball and stick)

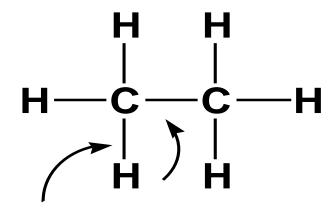



تشكل الروابط بين الذرات

- تتشكل الروابط بين الذرات لأن المركب الناتج أكثر ثباتا من الذرات المنفصلة. الروابط في المركبات العضوية هي روابط تساهمية (تشاركية): covalent bonds (${
 m CH}_4$). خيارت الكربون أربعة إلكترونات تكافؤ (${
 m 2s}^2\ 2p^3$): تشكل أربع روابط ${
 m CH}_4$). حملك ذرة النيتروجين خمسة الكترونات تكافؤ (${
 m 2s}^2\ 2p^3$): تشكل فقط ثلاث روابط
 - $(\mathbf{H}_2\mathbf{O})$ تشكل رابطتين ستة الكترونات تكافؤ تكافؤ و $2s^2\,2p^4$

تهجین المدارات : المدارات sp^3 وبنیة المتان

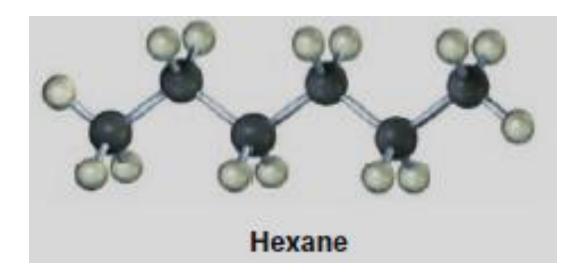

يؤدي اندماج ثلاثة مدارات p ومدار s في ذرة الكربون إلى تشكل أربعة مدارات هجينة sp^3 تتجه محاورها إلى رؤوس رباعي وجوه منتظم


المدارات sp^3 وبنية الإتان

يؤدي تراكب مداري sp^3 لذرتي كربون في جزيء المتان تراكبا رأسيا (انتهائيا) ، إلى تشكل الرابطة سيغما كربون - كربون قوتها rvalpha ك جول مول

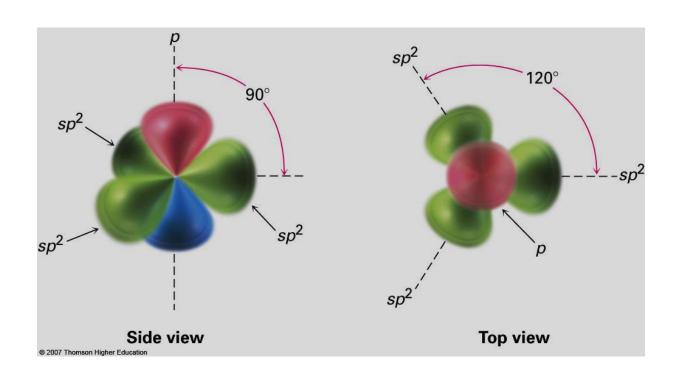
C–H bond strength in ethane 423 kJ/mol C–C bond strength is 376 kJ/mol

الروابط سيغما كربون- كربون ،وكربون -هيدروجين في الإتان

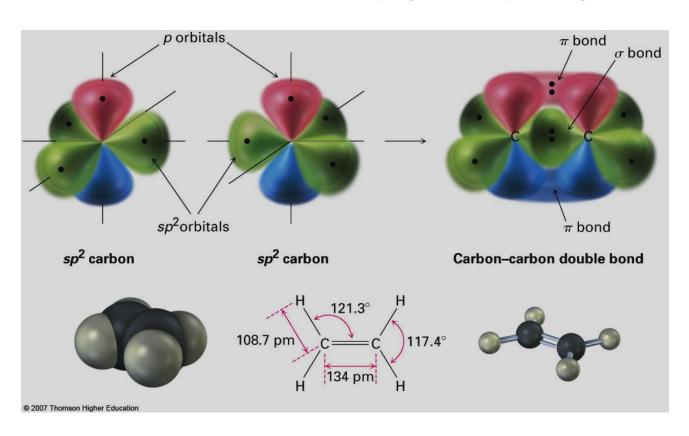

sigma bonds

C-C bond: SP³-SP³ overlap C-H bond: SP³-S overlap

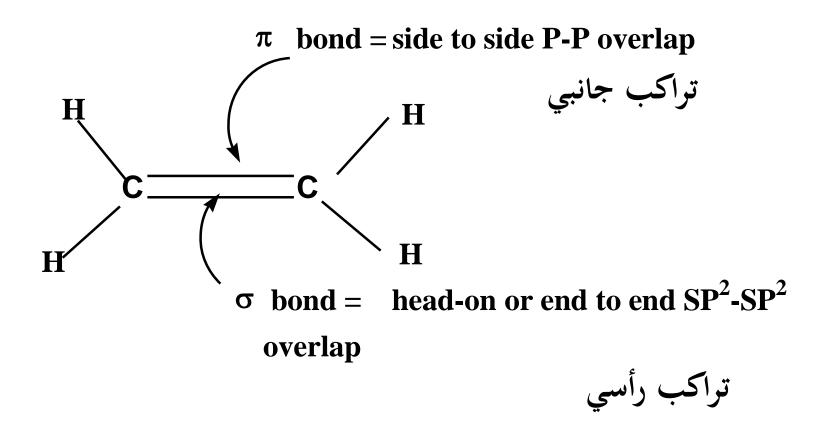
Draw a line-bond structure for propane, CH₃CH₂CH₃. Predict the value of each bond angle, and indicate the overall shape of the molecule.


Problem 1.9

Convert the following molecular model of hexane, a component of gasoline, into a line-bond structure (gray = C, ivory = H).


ذرة كربون ذات تهجين Sp2

يؤدي اندماج مداري \mathbf{p} ومدار \mathbf{s} في ذرة الكربون إلى تشكل ثلاثة مدارات هجينة \mathbf{sp}^2 تقع محاورها في مستوى واحد والزوايا بينها \mathbf{r} ۲۲ درجة، ويتعامد محور المدار الثالث غير الهجين \mathbf{p} مع مستوى المدارات الهجينة.


الرابطة المزدوجة كربون — كربون، التهجين Sp^2 بنية الإتيلين

يؤدي تراكب مدارات ذرتي كربون Sp^2 إلى تشكل الرابطة المزدوجة كربون π كربون في مركب الإتيلين. تتكون هذه الرابطة من الرابطة سيغما والرابطة π . تتشكل الرابطة سيغما من تراكب مداري Sp^2 تراكبا رأسيا في حين تتشكل الرابطة π من تراكب المدارين Φ غير الهجينين تراكبا جانبيا.

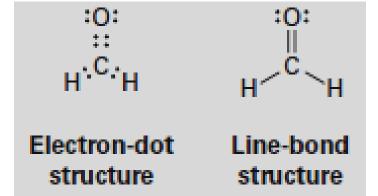
الرابطة المزدوجة كربون - كربون في الإتيلين

Carbon atom: sp2 hybridized

Worked Example 1.3 Drawing Electron-Dot and Line-Bond Structures.

Commonly used in biology as a tissue preservative, formaldehyde, CH₂O, contains a carbon–*oxygen double bond.*

<u>Draw electron-dot and line-bond structures of formaldehyde, and indicate</u> the hybridization of the carbon orbitals.


Strategy

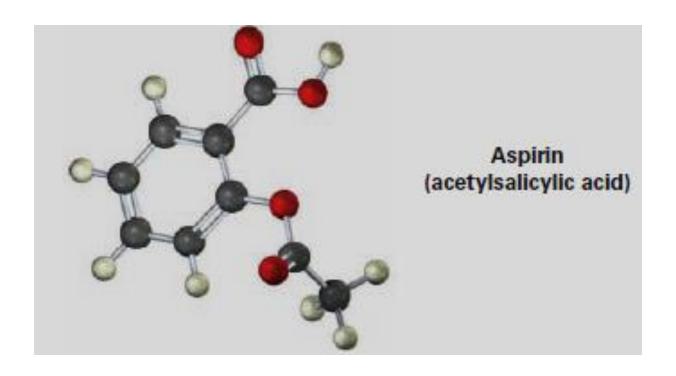
We know that hydrogen forms one covalent bond, carbon forms four, and oxygen forms two.

Solution

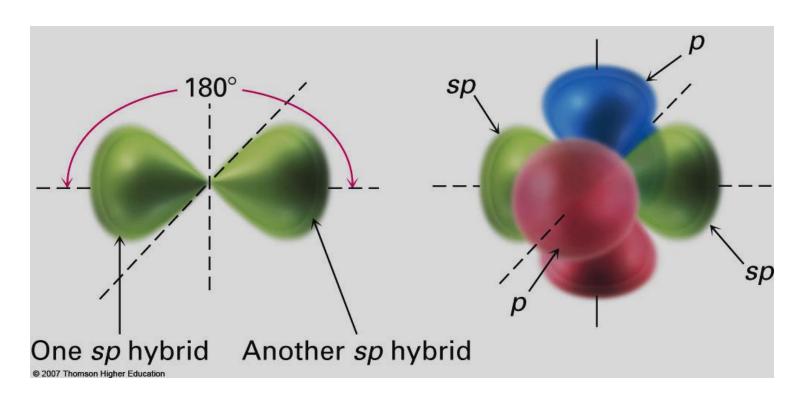
There is only one way that two hydrogens, one carbon, and one oxygen

can combine:

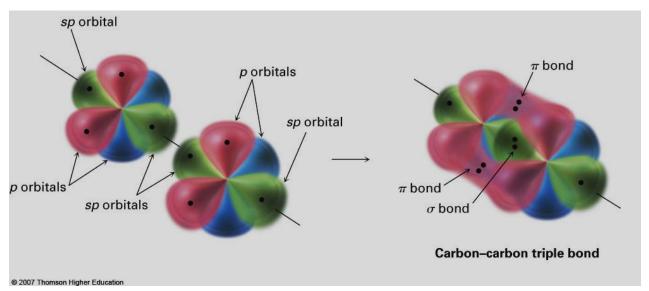
Like the carbon atoms in ethylene, the carbon atom in formaldehyde is in a double bond and its orbitals are therefore *sp2-hybridized*

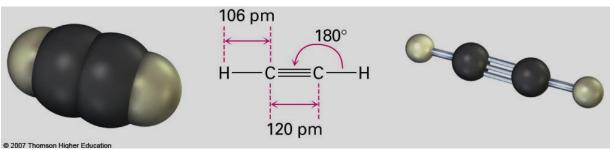

Draw a line-bond structure for propene, CH₃CH=CH₂. Indicate the hybridization of the orbitals on each carbon, and predict the value of each bond angle.

Problem 1.11


Draw a line-bond structure for 1,3-butadiene, H₂C=CH-CH=CH₂.

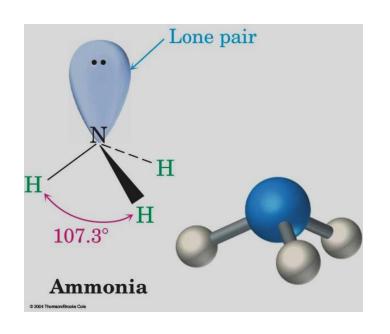
Indicate the hybridization of the orbitals on each carbon, and predict the value of each bond angle.

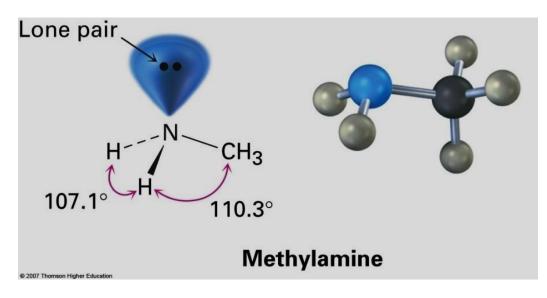

Following is a molecular model of aspirin (acetylsalicylic acid). Identify the hybridization of the orbitals on each carbon atom in aspirin, and tell which atoms have lone pairs of electrons (gray = C, red=O, ivory = H).



ذرة كربون ذات تهجين Sp

الرابطة الثلاثية كربون — كربون، التهجين SP وبنية الأسيتيلين يؤدي تراكب مدارات ذرتي كربون sp إلى تشكل الرابطة الثلاثية كربون – كربون في الأستيلين، رابطة سيغما ناتجة من التراكب sp sp ورابطتين π كل واحدة منهما ناتجة من التراكب p

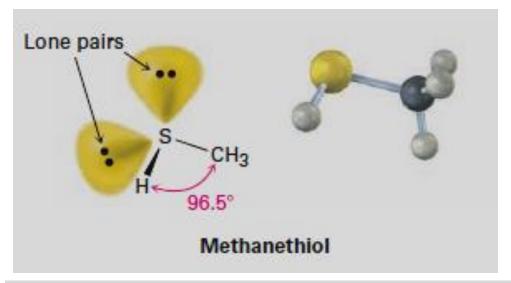


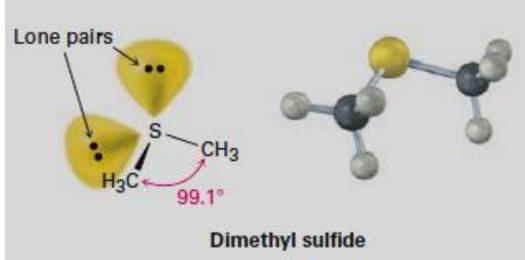


Problem 1.13

Draw a line-bond structure for propyne, $CH_3C \equiv CH$. Indicate the hybridization of the orbitals on each carbon, and predict a value for each bond angle.

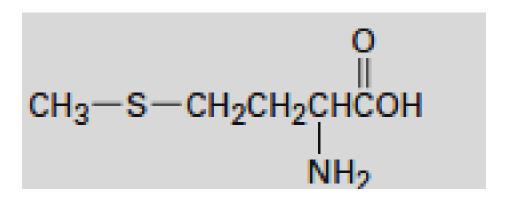

تهجین النتروجین Hybridization of Nitrogen



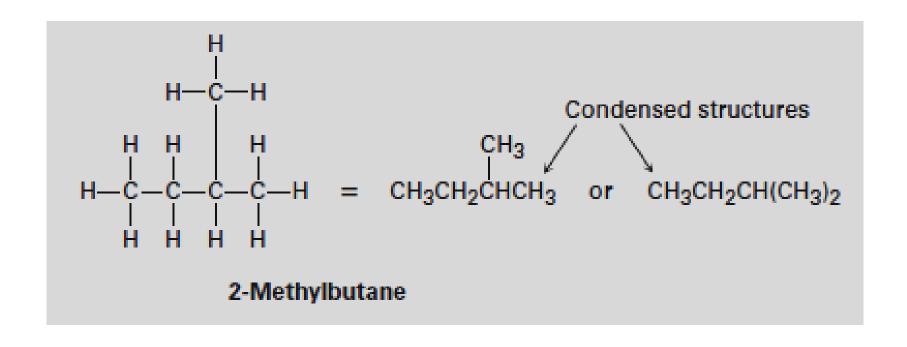

Methylamine (CH₃NH₂), an organic derivative of ammonia (NH₃) is the substance responsible for the odor of rotting fish.

تهجين الأوكسجين

تهجين الكبريت



approximate *sp3 hybridization* around sulfur, although both have significant deviation from the 109.5° tetrahedralangle.


Problem 1.14

Identify all <u>nonbonding lone pairs</u> of electrons in the following molecules, and tell what <u>geometry</u> you expect for each of the indicated atoms.

- (a) The oxygen atom in dimethyl ether, CH₃—O—CH₃
- (b) The nitrogen atom in trimethylamine, N (CH₃)₃
- (c) The phosphorus atom in phosphine, PH₃
- (d) The sulfur atom in the amino acid methionine

Drawing Chemical Structures

Drawing Chemical Structures

Compound	Kekulé structure	Skeletal structure
Isoprene, C ₅ H ₈	H H H H H H H H H H H H H H H H	
Methylcyclohexane, C ₇ H ₁₄	H H H H H H H H H H H H H H H H H H H	
Phenol, C ₆ H ₆ O	H C C C C O H	ОН

Interpreting a Line-Bond Structure Worked Example 1.4

Carvone, a substance responsible for the odor of spearmint ورق النعناع, has the following structure. Tell <u>how many hydrogens</u> are bonded to each carbon, and give the <u>molecular formula</u> of carvone.

Carvone

Strategy

The end of a line represents a carbon atom with 3 hydrogens, CH₃; a two-way intersection is a carbon atom with 2 hydrogens, CH₂; a three-way intersection is a carbon atom with 1 hydrogen, CH; and a four-way intersection is a carbon atom with no attached hydrogens.

Problem 1.15

Tell how many hydrogens are bonded to each carbon in the following compounds, and give the <u>molecular formula</u> of each substance:

Complete the electron-dot structure of caffeine, showing all lone-pair electrons, and identify the hybridization of the indicated atoms.

Organic Foods: Risk versus Benefit

